hub

CELLxGENE: scRNA-seq

CZ CELLxGENE hosts the globally largest standardized collection of scRNA-seq datasets.

LaminDB makes it easy to query the CELLxGENE data and integrate it with in-house data of any kind (omics, phenotypes, pdfs, notebooks, ML models, …).

You can use the CELLxGENE data in two ways:

  1. Query collections of AnnData objects.

  2. Slice a big array store produced by concatenated AnnData objects via tiledbsoma.

If you are interested in building similar data assets in-house:

  1. See the transfer guide to zero-copy data to your own LaminDB instance.

  2. See the scRNA guide to create a growing, standardized & versioned scRNA-seq dataset collection.

Show me a screenshot

Load the public LaminDB instance that mirrors cellxgene:

# !pip install 'lamindb[bionty,ourprojects,jupyter]'
!lamin load laminlabs/cellxgene
Hide code cell output
! schema module 'ourprojects' is not installed → no access to its labels & registries (resolve via `pip install ourprojects`)
→ connected lamindb: laminlabs/cellxgene
import lamindb as ln
import bionty as bt
Hide code cell output
! schema module 'ourprojects' is not installed → no access to its labels & registries (resolve via `pip install ourprojects`)
→ connected lamindb: laminlabs/cellxgene

Query & understand metadata

Auto-complete metadata

You can create look-up objects for any registry in LaminDB, including basic biological entities and things like users or storage locations.

Let’s use auto-complete to look up cell types:

Show me a screenshot
cell_types = bt.CellType.lookup()
cell_types.effector_t_cell
Hide code cell output
CellType(uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, source_id=48, created_at=2023-11-28 22:30:57 UTC)

You can also arbitrarily chain filters and create lookups from them:

users = ln.User.lookup()
organisms = bt.Organism.lookup()
experimental_factors = bt.ExperimentalFactor.lookup()  # labels for experimental factors
tissues = bt.Tissue.lookup()  # tissue labels
suspension_types = ln.ULabel.filter(name="is_suspension_type").one().children.lookup()  # suspension types
# here we choose to return .name directly
features = ln.Feature.lookup(return_field="name")
assays = bt.ExperimentalFactor.lookup(return_field="name")

Search & filter metadata

We can use search & filters for metadata:

bt.CellType.search("effector T cell").df().head()
Hide code cell output
uid name ontology_id abbr synonyms description source_id run_id created_at created_by_id
id
1623 3nfZTVV4 effector T cell CL:0000911 None effector T-cell|effector T-lymphocyte|effector... A Differentiated T Cell With Ability To Traffi... 48 None 2023-11-28 22:30:57.481760+00:00 1
1169 6JD5JCZC CD8-positive, alpha-beta cytokine secreting ef... CL:0000908 None CD8-positive, alpha-beta cytokine secreting ef... A Cd8-Positive, Alpha-Beta T Cell With The Phe... 48 None 2023-11-28 22:27:55.571572+00:00 1
1229 69TEBGqb exhausted T cell CL:0011025 None Tex cell|An effector T cell that displays impa... None 48 None 2023-11-28 22:27:55.572880+00:00 1
1331 43cBCa7s helper T cell CL:0000912 None helper T-lymphocyte|T-helper cell|helper T lym... A Effector T Cell That Provides Help In The Fo... 48 None 2023-11-28 22:27:55.575949+00:00 1
1503 1oa5G2Mq memory T cell CL:0000813 None memory T-cell|memory T lymphocyte|memory T-lym... A Long-Lived, Antigen-Experienced T Cell That ... 48 None 2023-11-28 22:27:55.580286+00:00 1

And use a uid to filter exactly one metadata record:

effector_t_cell = bt.CellType.get("3nfZTVV4")
effector_t_cell
Hide code cell output
CellType(uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, source_id=48, created_at=2023-11-28 22:30:57 UTC)

Understand ontologies

View the related ontology terms:

effector_t_cell.view_parents(distance=2, with_children=True)
Hide code cell output
_images/6cdfc2f61da5a14e92b8512c8b1af5865ee670a550a55ae2659acf11ebca5fbc.svg

Or access them programmatically:

effector_t_cell.children.df()
Hide code cell output
uid name ontology_id abbr synonyms description source_id run_id created_at created_by_id
id
931 2VQirdSp effector CD8-positive, alpha-beta T cell CL:0001050 None effector CD8-positive, alpha-beta T lymphocyte... A Cd8-Positive, Alpha-Beta T Cell With The Phe... 48 None 2023-11-28 22:27:55.565976+00:00 1
1088 490Xhb24 effector CD4-positive, alpha-beta T cell CL:0001044 None effector CD4-positive, alpha-beta T lymphocyte... A Cd4-Positive, Alpha-Beta T Cell With The Phe... 48 None 2023-11-28 22:27:55.569828+00:00 1
1229 69TEBGqb exhausted T cell CL:0011025 None Tex cell|An effector T cell that displays impa... None 48 None 2023-11-28 22:27:55.572880+00:00 1
1309 5s4gCMdn cytotoxic T cell CL:0000910 None cytotoxic T lymphocyte|cytotoxic T-lymphocyte|... A Mature T Cell That Differentiated And Acquir... 48 None 2023-11-28 22:27:55.575440+00:00 1
1331 43cBCa7s helper T cell CL:0000912 None helper T-lymphocyte|T-helper cell|helper T lym... A Effector T Cell That Provides Help In The Fo... 48 None 2023-11-28 22:27:55.575949+00:00 1

Query for individual datasets

Every individual dataset in CELLxGENE is an .h5ad file that is stored as an artifact in LaminDB. Here is an exemplary query:

ln.Artifact.filter(
    suffix=".h5ad",  # filename suffix
    description__contains="immune",
    size__gt=1e9,  # size > 1GB
    cell_types__in=[cell_types.b_cell, cell_types.t_cell],  # cell types measured in AnnData
    created_by=users.sunnyosun   # creator
).order_by(
    "created_at"
).df(
    include=["cell_types__name", "created_by__handle"]  # join with additional info
).head()
Hide code cell output
cell_types__name created_by__handle uid version is_latest description key suffix type size ... n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
879 [conventional dendritic cell, classical monocy... sunnyosun BCutg5cxmqLmy2Z5SS8J 2023-07-25 False Type I interferon autoantibodies are associate... cell-census/2023-07-25/h5ads/01ad3cd7-3929-465... .h5ad None 6353682597 ... 600929 md5-n AnnData 1 False 2 11 16 2023-11-28 21:45:49.000689+00:00 1
1106 [immature B cell, monocyte, naive thymus-deriv... sunnyosun 3xdOASXuAxxJtSchJO3D 2023-07-25 False HSC/immune cells (all hematopoietic-derived ce... cell-census/2023-07-25/h5ads/48101fa2-1a63-451... .h5ad None 6214230662 ... 589390 md5-n AnnData 1 False 2 11 16 2023-11-28 21:46:02.770448+00:00 1
1174 [monocyte, conventional dendritic cell, plasma... sunnyosun wt7eD72sTzwL3rfYaZr2 2023-07-25 False A scRNA-seq atlas of immune cells at the CNS b... cell-census/2023-07-25/h5ads/58b01044-c5e5-4b0... .h5ad None 1052158249 ... 130908 md5-n AnnData 1 False 2 11 16 2023-11-28 21:46:06.866895+00:00 1
1377 [monocyte, ciliated cell, macrophage, natural ... sunnyosun znTBqWgfYgFlLjdQ6Ba7 2023-07-25 False Large-scale single-cell analysis reveals criti... cell-census/2023-07-25/h5ads/9dbab10c-118d-496... .h5ad None 13929140098 ... 1462702 md5-n AnnData 1 False 2 11 16 2023-11-28 21:46:19.141781+00:00 1
1482 [effector CD4-positive, alpha-beta T cell, con... sunnyosun dEP0dZ8UxLgwnkLjz6Iq 2023-07-25 False Single-cell sequencing links multiregional imm... cell-census/2023-07-25/h5ads/bd65a70f-b274-413... .h5ad None 1204103287 ... 167283 md5-n AnnData 1 False 2 11 16 2023-11-28 21:46:25.468183+00:00 1

5 rows × 22 columns

What happens under the hood?

As you saw from inspecting ln.Artifact, ln.Artifact.cell_types relates artifacts with bt.CellType.

The expression cell_types__name__in performs the join of the underlying registries and matches bt.CellType.name to ["B cell", "T cell"].

Similar for created_by, which relates artifacts with ln.User.

To see what you can query for, look at the registry representation.

ln.Artifact
Hide code cell output
Artifact
  Simple fields
    .uid: CharField
    .description: CharField
    .key: CharField
    .suffix: CharField
    .type: CharField
    .size: BigIntegerField
    .hash: CharField
    .n_objects: BigIntegerField
    .n_observations: BigIntegerField
    .visibility: SmallIntegerField
    .version: CharField
    .is_latest: BooleanField
    .created_at: DateTimeField
    .updated_at: DateTimeField
  Relational fields
    .storage: Storage
    .transform: Transform
    .run: Run
    .created_by: User
    .ulabels: ULabel
    .input_of_runs: Run
    .feature_sets: FeatureSet
    .collections: Collection
  Bionty fields
    .organisms: bionty.Organism
    .genes: bionty.Gene
    .proteins: bionty.Protein
    .cell_markers: bionty.CellMarker
    .tissues: bionty.Tissue
    .cell_types: bionty.CellType
    .diseases: bionty.Disease
    .cell_lines: bionty.CellLine
    .phenotypes: bionty.Phenotype
    .pathways: bionty.Pathway
    .experimental_factors: bionty.ExperimentalFactor
    .developmental_stages: bionty.DevelopmentalStage
    .ethnicities: bionty.Ethnicity

Slice an individual dataset

Let’s look at an artifact and show its metadata using .describe().

artifact = ln.Artifact.get(description="Mature kidney dataset: immune", is_latest=True)
artifact.describe()
Hide code cell output
Artifact(uid='WwmBIhBNLTlRcSoBDt76', version='2024-07-01', is_latest=True, description='Mature kidney dataset: immune', key='cell-census/2024-07-01/h5ads/20d87640-4be8-487f-93d4-dce38378d00f.h5ad', suffix='.h5ad', type='dataset', size=45158726, hash='GCMHkdQSTeXxRVF7gMZFIA', n_observations=7803, _hash_type='md5-n', _accessor='AnnData', visibility=1, _key_is_virtual=False, created_at=2024-07-12 12:34:09 UTC)
  Provenance
    .storage = 's3://cellxgene-data-public'
    .transform = 'Census release 2024-07-01 (LTS)'
    .run = '2024-07-16 12:49:41 UTC'
    .created_by = 'sunnyosun'
  Labels
    .organisms = 'human'
    .tissues = 'kidney blood vessel', 'renal pelvis', 'cortex of kidney', 'renal medulla', 'kidney'
    .cell_types = 'CD8-positive, alpha-beta T cell', 'mature NK T cell', 'CD4-positive, alpha-beta T cell', 'natural killer cell', 'non-classical monocyte', 'plasmacytoid dendritic cell', 'neutrophil', 'B cell', 'kidney resident macrophage', 'dendritic cell', ...
    .diseases = 'normal'
    .phenotypes = 'male', 'female'
    .experimental_factors = '10x 3' v2'
    .developmental_stages = '2-year-old human stage', '4-year-old human stage', '12-year-old human stage', '44-year-old human stage', '49-year-old human stage', '53-year-old human stage', '63-year-old human stage', '64-year-old human stage', '67-year-old human stage', '70-year-old human stage', ...
    .ethnicities = 'unknown'
    .ulabels = 'TxK2', 'Wilms1', 'TxK4', 'TTx', 'RCC3', 'RCC1', 'VHL', 'TxK3', 'TxK1', 'Wilms3', ...
  Feature sets
    'obs' = 'assay', 'cell_type', 'development_stage', 'disease', 'donor_id', 'self_reported_ethnicity', 'sex', 'suspension_type', 'tissue', 'organism', 'tissue_type'
    'var' = 'None', 'EBF1', 'LINC02202', 'RNF145', 'LINC01932', 'UBLCP1', 'IL12B', 'LINC01845', 'LINC01847', 'ADRA1B', 'TTC1', 'PWWP2A', 'FABP6', 'FABP6-AS1', 'CCNJL', 'C1QTNF2'
  Feature values -- internal
    'assay' = 10x 3' v2
    'cell_type' = B cell, CD4-positive, alpha-beta T cell, CD8-positive, alpha-beta T cell, classical monocyte, dendritic cell, kidney resident macrophage, mast cell, mature NK T cell, natural killer cell, neutrophil, ...
    'development_stage' = 12-year-old human stage, 19-month-old human stage, 2-year-old human stage, 4-year-old human stage, 44-year-old human stage, 49-year-old human stage, 53-year-old human stage, 63-year-old human stage, 64-year-old human stage, 67-year-old human stage, ...
    'disease' = normal
    'donor_id' = RCC1, RCC2, RCC3, TTx, TxK1, TxK2, TxK3, TxK4, VHL, Wilms1, ...
    'organism' = human
    'self_reported_ethnicity' = unknown
    'sex' = female, male
    'suspension_type' = cell
    'tissue' = cortex of kidney, kidney, kidney blood vessel, renal medulla, renal pelvis
More ways of accessing metadata

Access just features:

artifact.features

Or get labels given a feature:

artifact.labels.get(features.tissue).df()

If you want to query a slice of the array data, you have two options:

  1. Cache the artifact on disk and return the path to the cached data. Doesn’t download anything if the artifact is already in the cache.

  2. Cache & load the entire artifact into memory via artifact.load() -> AnnData

  3. Stream the array using a (cloud-backed) accessor artifact.open() -> AnnDataAccessor

Both will run much faster in the AWS us-west-2 data center.

Cache:

cache_path = artifact.cache()
cache_path
Hide code cell output
! run input wasn't tracked, call `ln.track()` and re-run
PosixUPath('/home/runner/.cache/lamindb/cellxgene-data-public/cell-census/2024-07-01/h5ads/20d87640-4be8-487f-93d4-dce38378d00f.h5ad')

Cache & load:

adata = artifact.load()
adata
Hide code cell output
! run input wasn't tracked, call `ln.track()` and re-run
AnnData object with n_obs × n_vars = 7803 × 32839
    obs: 'donor_id', 'donor_age', 'self_reported_ethnicity_ontology_term_id', 'organism_ontology_term_id', 'sample_uuid', 'tissue_ontology_term_id', 'development_stage_ontology_term_id', 'suspension_uuid', 'suspension_type', 'library_uuid', 'assay_ontology_term_id', 'mapped_reference_annotation', 'is_primary_data', 'cell_type_ontology_term_id', 'author_cell_type', 'disease_ontology_term_id', 'reported_diseases', 'sex_ontology_term_id', 'compartment', 'Experiment', 'Project', 'tissue_type', 'cell_type', 'assay', 'disease', 'organism', 'sex', 'tissue', 'self_reported_ethnicity', 'development_stage', 'observation_joinid'
    var: 'feature_is_filtered', 'feature_name', 'feature_reference', 'feature_biotype', 'feature_length'
    uns: 'citation', 'default_embedding', 'schema_reference', 'schema_version', 'title'
    obsm: 'X_umap'

Now we have an AnnData object, which stores observation annotations matching our artifact-level query in the .obs slot, and we can re-use almost the same query on the array-level.

See the array-level query
adata_slice = adata[
    adata.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata.obs.tissue == tissues.kidney.name)
    & (adata.obs.suspension_type == suspension_types.cell.name)
    & (adata.obs.assay == experimental_factors.ln_10x_3_v2.name)
]
adata_slice
See the artifact-level query
collection = ln.Collection.filter(name="cellxgene-census", version="2024-07-01").one()
query = collection.artifacts.filter(
    organism=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)

AnnData uses pandas to manage metadata and the syntax differs slightly. However, the same metadata records are used.

Stream, slice and load the slice into memory:

with artifact.open() as adata_backed:
    display(adata_backed)
Hide code cell output
! run input wasn't tracked, call `ln.track()` and re-run
AnnDataAccessor object with n_obs × n_vars = 7803 × 32839
  constructed for the AnnData object 20d87640-4be8-487f-93d4-dce38378d00f.h5ad
    obs: ['Experiment', 'Project', '_index', 'assay', 'assay_ontology_term_id', 'author_cell_type', 'cell_type', 'cell_type_ontology_term_id', 'compartment', 'development_stage', 'development_stage_ontology_term_id', 'disease', 'disease_ontology_term_id', 'donor_age', 'donor_id', 'is_primary_data', 'library_uuid', 'mapped_reference_annotation', 'observation_joinid', 'organism', 'organism_ontology_term_id', 'reported_diseases', 'sample_uuid', 'self_reported_ethnicity', 'self_reported_ethnicity_ontology_term_id', 'sex', 'sex_ontology_term_id', 'suspension_type', 'suspension_uuid', 'tissue', 'tissue_ontology_term_id', 'tissue_type']
    obsm: ['X_umap']
    raw: ['X', 'var', 'varm']
    uns: ['citation', 'default_embedding', 'schema_reference', 'schema_version', 'title']
    var: ['_index', 'feature_biotype', 'feature_is_filtered', 'feature_length', 'feature_name', 'feature_reference']

We now have an AnnDataAccessor object, which behaves much like an AnnData, and slicing looks similar to the query above.

See the slicing operation
adata_backed_slice = adata_backed[
    adata_backed.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata_backed.obs.tissue == tissues.kidney.name)
    & (adata_backed.obs.suspension_type == suspension_types.cell.name)
    & (adata_backed.obs.assay == experimental_factors.ln_10x_3_v2.name)
]

adata_backed_slice.to_memory()

Query collections of datasets

Let’s search collections from CELLxGENE within the 2024-07-01 release:

ln.Collection.filter(version="2024-07-01").search("human retina", limit=10)
Hide code cell output
<QuerySet [Collection(uid='2gBKIwx8AtCHc4nfcQqc', version='2024-07-01', is_latest=True, name='A single-cell transcriptome atlas of the adult human retina', description='10.15252/embj.2018100811', hash='sCh4gUTJJJjECsp1dj0q', reference='3472f32d-4a33-48e2-aad5-666d4631bf4c', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:20:47 UTC), Collection(uid='zZLyhpo1aDdxdbULFbVT', version='2024-07-01', is_latest=True, name='Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration', description='10.1038/s41467-019-12780-8', hash='1B0m9_FahAvefSTM8_AV', reference='1a486c4c-c115-4721-8c9f-f9f096e10857', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:20:25 UTC), Collection(uid='tZYmzwfh0bIYzKBQVuro', version='2024-07-01', is_latest=True, name='Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution', description='10.1016/j.cell.2020.08.013', hash='nGcCV4HJONcma2SExXw2', reference='2f4c738f-e2f3-4553-9db2-0582a38ea4dc', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:19:55 UTC), Collection(uid='8ohRJQq8e3F7pdlBZbhz', version='2024-07-01', is_latest=True, name='Single cell atlas of the human retina', description='10.1101/2023.11.07.566105', hash='_vU7tll3t-0NCuJL-fm0', reference='4c6eaf5c-6d57-4c76-b1e9-60df8c655f1e', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:19:25 UTC), Collection(uid='quQDnLsMLkP3JRsC8gp4', version='2024-07-01', is_latest=True, name='Single-cell transcriptomic atlas for adult human retina', description='10.1016/j.xgen.2023.100298', hash='NIo8G6_reJTEqMzW2nMc', reference='af893e86-8e9f-41f1-a474-ef05359b1fb7', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:21:51 UTC), Collection(uid='Yxth0JJgMb2VVOCfSgWj', version='2024-07-01', is_latest=True, name='Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration', description='10.1073/pnas.1914143116', hash='j2LqihaaNawOtEFysl3c', reference='f8057c47-fcd8-4fcf-88b0-e2f930080f6e', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:21:55 UTC)]>

Let’s get the record of the top hit collection:

collection = ln.Collection.get("quQDnLsMLkP3JRsC8gp4")
collection
Hide code cell output
Collection(uid='quQDnLsMLkP3JRsC8gp4', version='2024-07-01', is_latest=True, name='Single-cell transcriptomic atlas for adult human retina', description='10.1016/j.xgen.2023.100298', hash='NIo8G6_reJTEqMzW2nMc', reference='af893e86-8e9f-41f1-a474-ef05359b1fb7', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:21:51 UTC)

It’s a Science paper and we can find more information on it using the DOI or CELLxGENE collection id. There are multiple versions of this collection.

collection.versions.df()
Hide code cell output
uid version is_latest name description hash reference reference_type visibility transform_id meta_artifact_id run_id created_at created_by_id
id
134 quQDnLsMLkP3JRsC6WWz 2023-07-25 False Single-cell transcriptomic atlas for adult hum... 10.1016/j.xgen.2023.100298 xhfSShX8lypXPx00zevx af893e86-8e9f-41f1-a474-ef05359b1fb7 CELLxGENE Collection ID 1 NaN None NaN 2024-01-08 12:22:12.891930+00:00 1
291 quQDnLsMLkP3JRsCJNGB 2023-12-15 False Single-cell transcriptomic atlas for adult hum... 10.1016/j.xgen.2023.100298 FsD52kpR7dF2h78-P3ka af893e86-8e9f-41f1-a474-ef05359b1fb7 CELLxGENE Collection ID 1 17.0 None 22.0 2024-01-11 13:41:01.880382+00:00 1
606 quQDnLsMLkP3JRsC8gp4 2024-07-01 True Single-cell transcriptomic atlas for adult hum... 10.1016/j.xgen.2023.100298 NIo8G6_reJTEqMzW2nMc af893e86-8e9f-41f1-a474-ef05359b1fb7 CELLxGENE Collection ID 1 22.0 None 27.0 2024-07-16 12:21:51.449109+00:00 1

The collection groups artifacts.

collection.artifacts.df()
Hide code cell output
! no run & transform got linked, call `ln.track()` & re-run
! run input wasn't tracked, call `ln.track()` and re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2852 Oc6ANFJ0FgOW1B70mNIq 2024-07-01 True Photoreceptor cells in human retina (rod cells... cell-census/2024-07-01/h5ads/00e5dedd-b9b7-43b... .h5ad dataset 990594324 qFT65q6_k30pki8-1_2HoQ None 21422 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:08.813762+00:00 1
2855 wYiUe9hn4TJijpoX90Mr 2024-07-01 True All major cell types in adult human retina cell-census/2024-07-01/h5ads/0129dbd9-a7d3-4f6... .h5ad dataset 14638089351 bXxaz_quQ4mIbVlarLZZKQ None 244474 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:08.826175+00:00 1
2919 GA2BXWwoJlcRfzNp3iyQ 2024-07-01 True Horizontal cells in human retina cell-census/2024-07-01/h5ads/11ef37ee-2173-458... .h5ad dataset 404987285 fR0O7fSUHxmAfEDC8J7Ipw None 7348 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:08.949267+00:00 1
3018 QpuY5RsGTBBMN61QGY4t 2024-07-01 True Amacrine cells in human retina cell-census/2024-07-01/h5ads/359f7af4-87d4-411... .h5ad dataset 3382221253 S7gXlC-cJ362BOqYZFxMOA None 56507 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.160201+00:00 1
3273 1OyQQLNfu1nzvVADODND 2024-07-01 True Bipolar cells in human retina cell-census/2024-07-01/h5ads/8f10185b-e0b3-46a... .h5ad dataset 3075818557 1GQwZcymSrr7d2Xit-5Deg None 53040 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.644258+00:00 1
3378 Ce4Mqe4X2vUhwkwnh5YQ 2024-07-01 True Retinal ganglion cells in human retina cell-census/2024-07-01/h5ads/aad97cb5-f375-45e... .h5ad dataset 784580498 w-_LJDfBv7vsZqw-9Jt72g None 11617 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.816906+00:00 1
3600 80xlsVmayPPBCCEZ7aBc 2024-07-01 True Non-neuronal cells in human retina cell-census/2024-07-01/h5ads/ed419b4e-db9b-40f... .h5ad dataset 1070671504 slN6j-9aSrYFw-IPL-wv-A None 18011 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:10.255394+00:00 1

Let’s now look at the collection that corresponds to the cellxgene-census release of .h5ad artifacts.

collection = ln.Collection.get(name="cellxgene-census", version="2024-07-01")
collection
Hide code cell output
Collection(uid='dMyEX3NTfKOEYXyMKDD7', version='2024-07-01', is_latest=True, name='cellxgene-census', hash='nI8Ag-HANeOpZOz-8CSn', visibility=1, created_by_id=1, transform_id=22, run_id=27, created_at=2024-07-16 12:14:38 UTC)

You can count all contained artifacts or get them as a dataframe.

collection.artifacts.count()
Hide code cell output
812
collection.artifacts.df().head()  # not tracking run & transform because read-only instance
Hide code cell output
! no run & transform got linked, call `ln.track()` & re-run
! run input wasn't tracked, call `ln.track()` and re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3042 GcVBvpW5MYlrsH1izOjN 2024-07-01 True All cells cell-census/2024-07-01/h5ads/3dc61ca1-ce40-46b... .h5ad dataset 947738392 NDhyYVxRpOG6UiEkDZKswg None 71752 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.211282+00:00 1
3587 1AeEHLQzGyRZL5nwpffu 2024-07-01 True wilms cell-census/2024-07-01/h5ads/ea01c125-67a7-4bd... .h5ad dataset 75413467 TNsJMqhUOekqUh4qtxvccA None 4636 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:10.235938+00:00 1
2850 vEw6vGy47Zi0Qj6TG6l7 2024-07-01 True Tabula Sapiens - Skin cell-census/2024-07-01/h5ads/0041b9c3-6a49-4bf... .h5ad dataset 199210144 sV0vZMpxZsTXIb6qqCg8ng None 9424 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:08.791875+00:00 1
3230 tggrprv4cllqGOrH8RlL 2024-07-01 True Dissection: Amygdaloid complex (AMY) - Basolat... cell-census/2024-07-01/h5ads/7d3ab174-e433-40f... .h5ad dataset 330480233 eS_gAyJD_P0oLd6IHEsPJQ None 28984 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.564663+00:00 1
3309 RCzyhZz9tfi6YI4F7mxb 2024-07-01 True Single cell RNA sequencing of follicular lymphoma cell-census/2024-07-01/h5ads/99950e99-2758-41d... .h5ad dataset 749041844 FaUU0Z0Uk6w2oewwJq8zZg None 137147 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.708223+00:00 1

You can query across artifacts by arbitrary metadata combinations, for instance:

query = collection.artifacts.filter(
    organisms=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)
query = query.order_by("size")  # order by size
query.df().head()  # convert to DataFrame
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2961 WwmBIhBNLTlRcSoBDt76 2024-07-01 True Mature kidney dataset: immune cell-census/2024-07-01/h5ads/20d87640-4be8-487... .h5ad dataset 45158726 GCMHkdQSTeXxRVF7gMZFIA None 7803 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.039540+00:00 1
2961 WwmBIhBNLTlRcSoBDt76 2024-07-01 True Mature kidney dataset: immune cell-census/2024-07-01/h5ads/20d87640-4be8-487... .h5ad dataset 45158726 GCMHkdQSTeXxRVF7gMZFIA None 7803 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.039540+00:00 1
3000 gHlQ5Muwu3G9pvFCx3x8 2024-07-01 True Fetal kidney dataset: immune cell-census/2024-07-01/h5ads/2d31c0ca-0233-41c... .h5ad dataset 64546349 2qy8uy-65Sd_XcBU-nrPgA None 6847 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.128217+00:00 1
3324 P4Oai3OLGAzRwoicHfLM 2024-07-01 True Mature kidney dataset: full cell-census/2024-07-01/h5ads/9ea768a2-87ab-46b... .h5ad dataset 194047623 aZVpGZwAfMCziff_5ow2bg None 40268 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.732579+00:00 1
3324 P4Oai3OLGAzRwoicHfLM 2024-07-01 True Mature kidney dataset: full cell-census/2024-07-01/h5ads/9ea768a2-87ab-46b... .h5ad dataset 194047623 aZVpGZwAfMCziff_5ow2bg None 40268 md5-n AnnData 1 False 2 22 27 2024-07-12 12:34:09.732579+00:00 1

Slice a concatenated array

Let us now use the concatenated version of the Census collection: a tiledbsoma array that concatenates all AnnData arrays present in the collection we just explored. Slicing tiledbsoma works similar to slicing DataFrame or AnnData.

value_filter = (
    f'{features.tissue} == "{tissues.brain.name}" and {features.cell_type} in'
    f' ["{cell_types.microglial_cell.name}", "{cell_types.neuron.name}"] and'
    f' {features.suspension_type} == "{suspension_types.cell.name}" and {features.assay} =='
    f' "{assays.ln_10x_3_v3}"'
)
value_filter
'tissue == "brain" and cell_type in ["microglial cell", "neuron"] and suspension_type == "cell" and assay == "10x 3\' v3"'

Query for the tiledbsoma array store that contains all concatenated expression data. It’s a new dataset produced by concatenating all AnnData-like artifacts in the Census collection.

census_artifact = ln.Artifact.get(description="Census 2024-07-01")

Run the slicing operation.

human = "homo_sapiens"  # subset to human data

# open the array store for queries
with census_artifact.open() as store:
    # read SOMADataFrame as a slice
    cell_metadata = store["census_data"][human].obs.read(value_filter=value_filter)
    # concatenate results to pyarrow.Table
    cell_metadata = cell_metadata.concat()
    # convert to pandas.DataFrame
    cell_metadata = cell_metadata.to_pandas()

cell_metadata.head()
Hide code cell output
! run input wasn't tracked, call `ln.track()` and re-run
soma_joinid dataset_id assay assay_ontology_term_id cell_type cell_type_ontology_term_id development_stage development_stage_ontology_term_id disease disease_ontology_term_id ... tissue tissue_ontology_term_id tissue_type tissue_general tissue_general_ontology_term_id raw_sum nnz raw_mean_nnz raw_variance_nnz n_measured_vars
0 48182177 c888b684-6c51-431f-972a-6c963044cef0 10x 3' v3 EFO:0009922 microglial cell CL:0000129 68-year-old human stage HsapDv:0000162 glioblastoma MONDO:0018177 ... brain UBERON:0000955 tissue brain UBERON:0000955 15204.0 3959 3.840364 209.374207 27229
1 48182178 c888b684-6c51-431f-972a-6c963044cef0 10x 3' v3 EFO:0009922 microglial cell CL:0000129 68-year-old human stage HsapDv:0000162 glioblastoma MONDO:0018177 ... brain UBERON:0000955 tissue brain UBERON:0000955 39230.0 5885 6.666100 875.502870 27229
2 48182185 c888b684-6c51-431f-972a-6c963044cef0 10x 3' v3 EFO:0009922 microglial cell CL:0000129 68-year-old human stage HsapDv:0000162 glioblastoma MONDO:0018177 ... brain UBERON:0000955 tissue brain UBERON:0000955 9576.0 2738 3.497443 121.333753 27229
3 48182187 c888b684-6c51-431f-972a-6c963044cef0 10x 3' v3 EFO:0009922 microglial cell CL:0000129 68-year-old human stage HsapDv:0000162 glioblastoma MONDO:0018177 ... brain UBERON:0000955 tissue brain UBERON:0000955 19374.0 4096 4.729980 464.331956 27229
4 48182188 c888b684-6c51-431f-972a-6c963044cef0 10x 3' v3 EFO:0009922 microglial cell CL:0000129 68-year-old human stage HsapDv:0000162 glioblastoma MONDO:0018177 ... brain UBERON:0000955 tissue brain UBERON:0000955 8466.0 2477 3.417844 162.555950 27229

5 rows × 28 columns

Create an AnnData object.

from tiledbsoma import AxisQuery

with census_artifact.open() as store:
    experiment = store["census_data"][human]
    adata = experiment.axis_query(
        "RNA",
        obs_query=AxisQuery(value_filter=value_filter)
    ).to_anndata(
        X_name="raw",
        column_names={
            "obs": [
                features.assay,
                features.cell_type,
                features.tissue,
                features.disease,
                features.suspension_type,
            ]
        }
    )

adata.var = adata.var.set_index("feature_id")
adata
! run input wasn't tracked, call `ln.track()` and re-run
AnnData object with n_obs × n_vars = 66418 × 60530
    obs: 'assay', 'cell_type', 'tissue', 'disease', 'suspension_type'
    var: 'soma_joinid', 'feature_name', 'feature_length', 'nnz', 'n_measured_obs'

Train ML models

You can either directly train ML models on very large collections of AnnData-like artifacts or on a single concatenated tiledbsoma-like artifact. For pros & cons of these approaches, see this blog post.

On a collection of arrays

mapped() caches AnnData objects on disk and creates a map-style dataset that performs a virtual join of the features of the underlying AnnData objects.

from torch.utils.data import DataLoader

census_collection = ln.Collection.get(name="cellxgene-census", version="2024-07-01")

dataset = census_collection.mapped(obs_keys=[features.cell_type], join="outer")

dataloader = DataLoader(dataset, batch_size=128, shuffle=True)

for batch in dataloader:
    pass

dataset.close()

For more background, see Train a machine learning model on a collection.

On a concatenated array

You can create streaming PyTorch dataloaders from tiledbsoma stores using cellxgene_census package.

import cellxgene_census.experimental.ml as census_ml

store = census_artifact.open()

experiment = store["census_data"][human]
experiment_datapipe = census_ml.ExperimentDataPipe(
    experiment,
    measurement_name="RNA",
    X_name="raw",
    obs_query=AxisQuery(value_filter=value_filter),
    obs_column_names=[features.cell_type],
    batch_size=128,
    shuffle=True,
    soma_chunk_size=10000,
)
experiment_dataloader = census_ml.experiment_dataloader(experiment_datapipe)

for batch in experiment_dataloader:
    pass

store.close()

For more background see this guide.